Merge Sort

Divide-and-Conquer

Divide-and-conquer is a general algorithm design paradigm:

- Divide: divide the input data \boldsymbol{S} in two disjoint subsets \boldsymbol{S}_{1} and \boldsymbol{S}_{2}
- Recur: solve the subproblems associated with \boldsymbol{S}_{1} and \boldsymbol{S}_{2}
- the base case for the recursion are subproblems of size 0 or 1
- Conquer: combine the solutions for \boldsymbol{S}_{1} and \boldsymbol{S}_{2} into a solution for \boldsymbol{S}

Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm

- Like heap-sort
- Uses a comparator
- Has $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ running time
- Unlike heap-sort
- Does not use an auxiliary priority queue
- Accesses data in a sequential manner (suitable to sort data on a disk)

Merge Sort

Merge-sort on an input sequence \boldsymbol{S} with \boldsymbol{n} elements consists of three steps:

- Divide: partition \boldsymbol{S} into two sequences \boldsymbol{S}_{1} and \boldsymbol{S}_{2} of about $\boldsymbol{n} / 2$ elements each
- Recur: recursively sort \boldsymbol{S}_{1} and \boldsymbol{S}_{2}
- Conquer: merge S_{1} and S_{2} into a unique sorted sequence

```
Algorithm mergeSort(S,C)
    Input sequence S with }n\mathrm{ elements, comparator }
    Output sequence S sorted according to C
    if S.size() > 1
        (S},\mp@subsup{S}{2}{})\leftarrow\operatorname{partition(S,n/2)
        mergeSort( }\mp@subsup{S}{1}{},C
        mergeSort(S}\mp@subsup{S}{2}{},C
        S\leftarrowmerge( }\mp@subsup{S}{1}{},\mp@subsup{S}{2}{}
```


Merging two sorted sequences

The conquer step of mergesort consists of merging two sorted sequences \boldsymbol{A} and \boldsymbol{B} into a sorted sequence S containing the union of the elements of \boldsymbol{A} and \boldsymbol{B}

Merging two sorted sequences, each with $\boldsymbol{n} / 2$ elements, takes $\boldsymbol{O}(\boldsymbol{n})$ time

Algorithm $\operatorname{merge}(A, B)$
Input sequences \boldsymbol{A} and \boldsymbol{B} with $\boldsymbol{n} / 2$ elements each Output sorted sequence of $A \cup B$
$S \leftarrow$ empty sequence
while \neg A.isEmpty () $\wedge \neg$ B.isEmpty ()
if A.first().element () < B.first ().element ()
S.insertLast(A.remove(A.first())) else
S.insertLast(B.remove(B.first()))
while \neg A. isEmpty ()
S.insertLast(A.remove(A.first()))
while \neg B.isEmpty ()
S.insertLast(B.remove(B.first()))
return S

Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree

- each node represents a recursive call of merge-sort and stores
- unsorted sequence before the execution and its partition
- sorted sequence at the end of the execution
- the root is the initial call
- the leaves are calls on subsequences of size 1

Execution Example

- Partition

Execution Example (cont.)

- Recursive call, partition

Execution Example (cont.)

- Recursive call, partition

Execution Example (cont.)

- Recursive call, base case

Execution Example (cont.)

- Recursive call, base case

Execution Example (cont.)

- Merge

Execution Example (cont.)

- Recursive call, ..., base case, merge

Execution Example (cont.)

- Merge

Execution Example (cont.)

Execution Example (cont.)

- Merge

Analysis of Merge-Sort

- The height \boldsymbol{h} of the merge-sort tree is $\boldsymbol{O}(\log \boldsymbol{n})$
- at each recursive call we divide the sequence in half
- The overall amount or work done at the nodes of depth \boldsymbol{i} is $\boldsymbol{O}(\boldsymbol{n})$
- we partition and merge 2^{i} sequences of size $n / 2^{i}$
- we make 2^{i+1} recursive calls
- Thus, the total running time of merge-sort is $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$
depth \#seqs size

0	1	n
1	2	$n / 2$
i	2^{i}	$n / 2^{i}$
\cdots	\cdots	\cdots

Comparing sorting algorithms

Consider the following when evaluating a sorting algorithm:

- Time complexity
- Space complexity
- An in-place algorithm requires only $n+O(1)$ space, using the already given space for the n elements and $O(1)$ additional space
- Stability
- A sorting algorithm is stable if it preserves the original relative ordering of elements with equal value
- Ex: Unsorted sequence (B, b, a, c). Suppose B = b and a $<\mathrm{b}<\mathrm{c}$.
- Stable sorted: (a, B, b, c)
- Unstable sorted: (a, b, B, c)
- Necessary if we want to sort repeatedly by different attributes (i.e., sort by first name, then sort again by last name)

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$	in-place not stable for small data sets (<1K)
insertion-sort	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$	in-place stable for small data sets (<1K)
heap-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	not stable for large data sets (1K-1M)
merge-sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	not in-place stable sequential data access for huge data sets (> 1M)

Sets

Set ADT

- A collection of unordered distinct objects
- there is no inherent ordering of elements in a set, but keeping the elements sorted can lead to more efficient set operations
- Main operations
- union (B) : executes $A \leftarrow A \cup B$
$-\operatorname{intersect}(B)$: executes $A \leftarrow A \cap B$
$-\operatorname{subtract}(B)$: executes $A \leftarrow A-B$
- implemented using a generic version of the merge algorithm
- Running time of an operation should be at most $O\left(n_{A}+n_{B}\right)$

Storing a Set in a List

- We can implement a set with a list
- Elements are sorted according to some canonical ordering
- Space used is $O(n)$

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 2 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{array}
$$

Generic Merging

- Generalized merge of two sorted lists A and B
- Auxiliary methods aIsLess, bIsLess, bothAreEqual decide whether to add the element to list S based on what main operation is performed

```
Algorithm genericMerge (A, B)
    \(S \leftarrow\) empty sequence
    while \(\neg\) A.isEmpty () \(\wedge \neg\) B.isEmpty ()
        \(a \leftarrow\) A.first().element(); \(b \leftarrow\) B.first().element()
        if \(a<b\)
            aIsLess(a, S); A.remove(A.first())
        else if \(b<a\)
            bIsLess(b, S); B.remove(B.first())
        else \(\{\boldsymbol{b}=\boldsymbol{a}\}\)
            bothAreEqual \((a, b, S)\)
            A.remove(A.first()); B.remove(B.first())
while \(\neg\) A.isEmpty ()
        aIsLess(a, S); A.remove(A.first())
    while \(\neg\) B.isEmpty ()
        bIsLess(b, S); B.remove(B.first())
    return \(S\)
```


Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{array}{l|l|l|l|l|l}
A
\end{array} \quad \begin{array}{|l|l|l|l|l|l|}
\hline 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array}
$$

$$
S=A \cup B
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{aligned}
& A \begin{array}{l|l|l|l|l|}
\hline 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array} \\
& S=A \cup B \\
& 2
\end{aligned}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{aligned}
& \begin{array}{ll|l|}
S=A \cup B \quad 2 & 5 \\
\hline
\end{array}
\end{aligned}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{aligned}
& A \begin{array}{|l|l|l|l|l|}
\hline 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array} \\
& S=A \cup B \\
& \cline { 2 - 5 }
\end{aligned} \begin{array}{ll}
2 & 5 \\
\hline
\end{array}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{aligned}
& A \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array} \\
& S=A \cup B \\
& \cline { 2 - 3 }
\end{aligned} \begin{array}{ll}
2 & 5 \\
\hline
\end{array}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{aligned}
& A \begin{array}{|l|l|l|l|ll|l|l|l|l|}
\hline 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \begin{array}{ll|l|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array} \\
& S=A \cup B
\end{aligned} \begin{array}{llll}
2 & 5 & 6 & 7 \\
\hline
\end{array}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{aligned}
& A \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \quad B \quad \begin{array}{|l|l|l|l|}
\hline 2 & 7 & 8 & 10 \\
\hline
\end{array} \\
& \begin{array}{ll|l|l|l|l|l|}
\hline S=A \cup B
\end{array} \quad \begin{array}{ll}
2 & 5 \\
6 & 7 \\
\hline
\end{array}
\end{aligned}
$$

Example: Union

- if $a<b$, copy a to output sequence and go to next element of A
- if $a=b$, copy a to output sequence and go to next element of A and B
- if $a>b$, copy b to output sequence and go to next element of B

$$
\begin{array}{l|l|l|l|l|l}
A
\end{array} \quad \begin{array}{|l|l|l|l|l|l|}
\hline 2 & 5 & 6 & 7 & 9 \\
\hline
\end{array}
$$

$$
\begin{array}{ll|l|l|l|l|l|l|}
S=A \cup B & 2 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{array}
$$

Using Generic Merge for Set Operations

- Any of the set operations can be implemented using a generic merge
- For example:
- intersection: only copy elements that are duplicated in both lists
- subtraction: only copy elements from A that are not equal to those in B
- All methods run in linear time.

Quick Sort

Quick Sort

A sorting algorithm based on the divide-and-conquer paradigm

- Divide: pick a pivot element \boldsymbol{x} and partition S into
- L elements less than \boldsymbol{x}
- \boldsymbol{E} elements equal to \boldsymbol{x}
- \boldsymbol{G} elements greater than \boldsymbol{x}
- Recur: sort \boldsymbol{L} and \boldsymbol{G}
- Conquer: join $\boldsymbol{L}, \boldsymbol{E}$ and \boldsymbol{G}

The choice of the pivot affects the algorithm's performance.

Partition

1. Remove each element \boldsymbol{y} from \boldsymbol{S}
2. Insert \boldsymbol{y} into $\boldsymbol{L}, \boldsymbol{E}$ or \boldsymbol{G}, depending on the result of the comparison with the pivot \boldsymbol{x}

- Each insert/remove takes $\boldsymbol{O}(1)$ time.
- Thus, the partition step of quick-sort takes $\boldsymbol{O}(\boldsymbol{n})$ time.
S

Algorithm partition (S, x)
Input sequence S, pivot element \boldsymbol{x} Output subsequences L, E, G
$L, E, G \leftarrow$ empty sequences
while \neg S.isEmpty ()
$y \leftarrow$ S.remove(S.first())
if $y<x$
L.insertLast(y)
else if $y=x$
E.insertLast(y)
else $\{\boldsymbol{y}>\boldsymbol{x}\}$
G.insertLast(y)
return L, E, G

The choice of the pivot affects the performance of Quick Sort.

Quick-Sort Tree

An execution of quick-sort depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
- Unsorted sequence before the execution and its pivot
- Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

Quick Sort Execution

- Strategy: Select the last element as the pivot

Quick Sort Execution

- Strategy: Select the last element as the pivot

- Select pivot, partition, recursive call

Quick Sort Execution

- Strategy: Select the last element as the pivot

- Select pivot, partition, recursive call

Quick Sort Execution

- Strategy: Select the last element as the pivot

- Join

Quick Sort Execution

- Strategy: Select the last element as the pivot

Quick Sort Execution

- Strategy: Select the last element as the pivot

Quick Sort Execution

- Strategy: Select the last element as the pivot

Quick Sort Execution

- Strategy: Select the last element as the pivot

Quick Sort Execution

- Strategy: Select the last element as the pivot

Worst-case Running Time

Occurs when the pivot is the unique minimum or maximum element

- One of \boldsymbol{L} and \boldsymbol{G} has size $\boldsymbol{n}-1$ and the other has size 0
- The running time is proportional to the sum: $\boldsymbol{n}+(\boldsymbol{n}-1)+\ldots+2+1$
- If we use the strategy of selecting the last element as the pivot, this happens when the list is already sorted!
Thus, the worst-case running time of quick-sort is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$
depth time

0	n
1	$n-1$
\cdots	\cdots
$n-1$	1

Randomized Quick Sort

Pivot selection strategy: choose a random element as the pivot

- Still has worst-case running time $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$
- Due to random selection, this case is highly unlikely
- Expected running time is $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s

- Good call: the sizes of \boldsymbol{L} and \boldsymbol{G} are each less than $3 \boldsymbol{s} / 4$
- Bad call: one of \boldsymbol{L} and \boldsymbol{G} has size greater than $3 s / 4$

Good call

Bad call

A call is good with probability $1 / 2$

- $1 / 2$ of the possible pivots cause good calls:

Quick Sort Pseudocode

The following procedure implements quicksort:

```
QUICKSORT \((A, p, r)\)
    if \(p<r\)
    \(q=\operatorname{PARTITION}(A, p, r)\)
    QUicksort \((A, p, q-1)\)
    QUICKSORT \((A, q+1, r)\)
```

To sort an entire array A, the initial call is QUICKSORT $(A, 1, A$ length $)$.

Partitioning the array

The key to the algorithm is the Partition procedure, which rearranges the subarray $A[p \ldots r]$ in place.

```
PaRtition \((A, p, r)\)
    \(x=A[r]\)
    \(i=p-1\)
    for \(j=p\) to \(r-1\)
    if \(A[j] \leq x\)
        \(i=i+1\)
        exchange \(A[i]\) with \(A[j]\)
    exchange \(A[i+1]\) with \(A[r]\)
    return \(i+1\)
```


Summary of Sorting Algorithms

\(\left.$$
\begin{array}{|c|l|l|}\hline \text { Algorithm } & \text { Time } & \text { Notes } \\
\hline \text { selection-sort } & \boldsymbol{O}\left(\boldsymbol{n}^{2}\right) & \begin{array}{l}\text { in-place, not stable } \\
\text { slow (good for small inputs) }\end{array} \\
\hline \text { insertion-sort } & \boldsymbol{O}\left(\boldsymbol{n}^{2}\right) & \begin{array}{l}\text { in-place, stable } \\
\text { slow (good for small inputs) }\end{array} \\
\hline \text { quick-sort } & \boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}) \\
\text { expected }\end{array}
$$ \quad \begin{array}{l}in-place, not stable

randomized

fast (good for large inputs)\end{array}\right]\)| heap-sort |
| :--- |
| merge-sort |

Exercise Other: Nuts and Bolts

You are given a collection of n bolts of different widths, and n corresponding nuts.

- You can test whether a given nut and bolt fit together, from which you learn whether the nut is too large, too small, or an exact match for the bolt.
- The differences in size between pairs of nuts or bolts are too small to see by eye, so you cannot compare the sizes of two nuts or two bolts directly.
- You are to match each bolt to each nut.

Give an efficient algorithm to solve the nuts and bolts problem.

Exercise

- How would you modify QUICKSORT to sort into nonincreasing order?

Sorting Lower Bound

Comparison Based Sorting

Recall - Sorting

- input: A sequence of n values $x_{1}, x_{2}, \ldots, x_{n}$
- output: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ such that $y_{1} \leq y_{2} \leq \ldots \leq y_{n}$

Many algorithms are comparison based

- they sort by making comparisons between pairs of objects
- ex: selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
- best so far runs in $O(n \log n)$ time... can we do better?

Let's derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements $x_{1}, x_{2}, \ldots, x_{n}$

Counting Comparisons

A decision tree represents every sequence of comparisons that an algorithm might make on an input of size n

- each possible run of the algorithm corresponds to a root-to-leaf path
- at each internal node a comparison $x_{i}<x_{j}$ is performed and branching made
- nodes annotated with the orderings consistent with the comparisons made so far
- leaf contains result of computation (a total order of elements)

Decision Tree Example

Algorithm: insertion sort
Instance $(n=3)$: the numbers $1,2,3$

Height of a Decision Tree

Claim: The height of a decision tree is $\Omega(n \log n)$.

Proof: There are n ! leaves. A tree of height h has at most 2^{h} leaves. So

$$
\begin{aligned}
2^{h} & \geq n! \\
h & \geq \log _{2}(n!)
\end{aligned}
$$

$$
\begin{aligned}
& \geq c \cdot \log _{2}\left(n^{n}\right) \frac{\text { minimum height (time) }}{\uparrow} \\
& =c \cdot n \log _{2} n .
\end{aligned}
$$

Thus, $h \in \Omega(n \log n)$.

Lower Bound

Theorem: Every comparison sort requires $\Omega(n \log n)$ in the worst-case.

Proof: Given a comparison sort, we look at the decision tree it generates on an input of size n.

- Each path from root to leaf is one possible sequence of comparisons
- Length of the path is the number of comparisons for that instance
- Height of the tree is the worst-case path length (number of comparisons)
Height of the tree is $\Omega(n \log n)$ by the previous claim. Hence, every comparison sort requires $\Omega(n \log n)$ comparisons.

